用大数据城市规划可以变得更好
用大数据城市规划可以变得更好
2016-05-25 16:40:58 来源:36大数据
抢沙发
2016-05-25 16:40:58 来源:36大数据
摘要:Intetix Foundation(英明泰思基金会)由从事数据科学、非营利组织和公共政策研究的中国学者发起成立,致力于通过数据科学改善人类社会和自然环境。
关键词:
大数据
智慧城市
大数据和城市模型-EUNOIA项目
可以理解的是,从非常规资源中获得与城市规划相关信息的大数据时代开始,城市综合模型已来到聚光灯下。基于众包的数据、遥感、在线社交网络、智能交通票务、手机使用情况和信用卡交易有一个共同点:它们都包含地理定位信息。因此,我们正从结构化的、静态的、人口和经济活动数据(例如,普查数据)转移到非结构化的、能够为城市动态提供新见解的动态数据。
图1. 典型的伦敦公共交通服务工作日早上8:30的一个快照。颜色编码的旅行风格:绿色的铁路服务,红色的巴士服务,黄色的巴士服务(更大区间的巴士服务),紫色的地铁服务和蓝色的渡轮服务
虽然数据的潜力巨大,但它也伴随着许多障碍。我们有更多的数据,但通常对美国的决策和城市用户的行为解释力低。另一个与作为城市模范的我们非常相关,且与这些数据类型相关的重要问题是其在我们案例研究领域中的“代表性”。在这个意义上,我们刚刚开始学习如何应对这个巨大的模型转变。在过去,城市模型中使用的人口数据中的行为模式,由1%的人口抽样调查(或类似的值)推断而出。从这些新数据集,我们现在有更高的覆盖率,达到40%或50%的人口,但此示例的大小往往是以素质低、有噪音的或带有偏见的数据为代价。数据挖掘和混合多源数据的能力正在偏见和不一致的识别中变得越来越重要,这些不一致的可以是非常庞大的数据集,其中数以亿计的记录是家常便饭。计算科学使我们能够更快地处理数据,基于数据挖掘的新统计学因其统计分析变得至关重要。
为了让事情更复杂,我们可以收集并使用所有这些数据的类似技术有一个更重要的影响:研究表明,ICT(信息和通信技术)正在改变着我们的生活方式。或者,换句话说,我们各种目的(工作、购物、休闲或教育等等)的日常活动都受到了ICT与环境交互方式的影响,不仅在我们规划它们的方式上,而且也在我们与它们进行互动和体验的形式上。城市模型在捕捉这些行为的变化中面临着一大挑战。
EUNOIA是一个欧洲科研项目,探讨如何可以整合、分析和可视化来自大数据和智能城市运动的大环境中可行的多源数据(包括来自智能卡、手机的使用痕迹、在线社交网络或信用卡,以及其他的数据),从而理解城市中的流动和位置模式。新的数据源不仅可以用来取代或增强传统的数据收集方法,还可以了解和促进新建模方法的发展。这些反过来又可以支持研究人员和专业从业人员对于城市用户如何在城市中居住和迁移有新的洞悉。手机数据可用于获取比传统家庭旅行调查更低的成本的起始点出行分布矩阵,也可以用于配合调查,提供丰富的数据池。信用卡使用中的数据提供了非常丰富的遍及整个城市支出流动的信息,可以用来制定、校准和验证零售地点模型。在线社交网络可以用来研究社会互动在移动性中的作用。这份名单是无止境的,它的探索仍然是一个大范围的未知领域。
EUNOIA项目正在考察这些事务和其他问题,并且开发以改进模型为目的并将其一体化为大规模的、最先进艺术的城市仿真工具,如基于代理的运输仿真框架材料模拟或更多聚合LUTi框架拟像。该项目还旨在开发用户友好型的视觉界面和数据展现形式,使分析推理和仿真结果的解释成为可能。在规划部门和来自三个城市(巴塞罗那、伦敦和苏黎世)参与该项目的移动利益攸关方合作中定义的若干案例研究,旨在评估新开发的工具解决有关政策问题的潜力,比如在伦敦和巴塞罗那规划和运营自行车分享系统。
总结语
城市规划模型,已经成为规划师解决各地城市诸多发展问题的一个有用工具。这些模型现在都已经使用了40多年,也就是说它们经历了多次重新评估来提高其精确度。即使如此,城市模型仍然面临许多挑战。在这里我们强调其中的四点: 第一,城市模型需要更多的计算机处理能力,特别是运输模型。让各种模型在短时间内实现快速而有效的运行。第二,可视化界面表明,LUTi模型的结果仍有很多上升空间。需要更具互动性和全面的工具来理解这些要执行的结果,从而帮助医生和其他利益有关者。第三,在动态与静态模型实现概念有关的建模社区中,已经存在着一些讨论。就如Ying和Wegener讨论,这是一个极具挑战性的课题,因为它指出了模型设计的核心,那就是更好地捕捉这个平衡最有可能不断变化的世界。最后,与我们目前研究的EUNOIA项目现状也许最相关的是,我们需要找出是否有更多的代表性样本,比如来自大数据的样本,在城市建模发展中发挥潜在作用。我们相信任何领域的重要突破,将使城市规划者能从更好的立场出发,以应对城市目前正面临的许多挑战。
第四十一届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:pingxiaoli
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。