2025-11-27 18:07:17 来源:互联网

项目核心创新在于设计了 KV Cache 分级缓存集成机制。该机制先对推理任务进行实时分析,智能识别Top-K 重要块并集中算力处理,从源头提升计算效率;同时采用数据冷热分层存储策略,根据数据访问频率,将生成数据动态划分为高频热数据与低频冷数据,再针对性优化存储位置,减少资源浪费。这一机制的落地依托昇腾CANN异构计算架构灵活的动态调度能力,能精准控制冷热数据在显存与主存间的流转,大幅降低数据迁移开销。最终,该方案实现单卡流畅处理超过1M的超长文本推理任务,系统推理吞吐量超过39%,彻底突破传统系统在长序列处理上的显存与性能瓶颈。
同时项目进行了元数据结构优化与缓存机制设计,其中数据索引与掩码是关键支撑 —— 通过精简索引结构、合并掩码维护步骤,有效减少重复运算,使昇腾NPU算力更集中于注意力计算与文本生成等核心任务,提升硬件利用效率。相关优化已通过vLLM-Ascend推理框架灵活集成,保障了技术方案的顺利落地。
目前,该项目源代码已在 Gitee 社区中开源,后续将进一步推送到昇腾开源生态,合入GitHub社区 vLLM-Ascend 项目专区。此次技术突破,不仅为超长文本推理提供了高效解决方案,更印证了昇腾生态在AI创新中的赋能价值。未来,随着该系统在更多行业场景的落地,昇腾将持续为AI技术研发提供算力与技术保障,推动大语言模型在长文本分析、智能办公、数字孪生等千行百业的深度应用,加速人工智能产业化进程。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。
