首页 > IT业界 > 正文

悠络客人脸识别技术在MegaFace排名中冲入全球公司前五!

2018-07-10 09:38:32  来源:中国软件资讯网

摘要:近日,悠络客的人工智能研究院(ULUFace),在国际知名人脸识别数据库MegaFace百万级别人脸测试中(Challenge1 FaceScrub identification),以97 4869%的成绩取得全球公司排名第五的好成绩。
关键词: MegaFace
   近日,悠络客的人工智能研究院(ULUFace),在国际知名人脸识别数据库MegaFace百万级别人脸测试中(Challenge1/FaceScrub identification),以97.4869%的成绩取得全球公司排名第五的好成绩。参加这项测试的还有来自微软、苏宁、腾讯优图、复旦等知名公司。

  

\

 

  目前世界知名的人脸识别技术验证平台有LFW和MegaFace,这两者是人脸识别研究领域最重要的人脸图像测评集合之一和目前最权威的、热门的评价人脸识别性能指标之一。

  LFW人脸图像集合中有13000多张从网上搜集来的非约束环境下的人像照片,主要用于验证给定两张照片中的人是否为同一人(Face Verification)即1:1场景。由于场景较容易,人脸库数量较少,准确率普遍达到99%以上,目前国内公司普遍采用这一人脸库宣传自己技术。

  

\

 

  Megaface是一项百万规模级别的面部识别算法测试基准,由美国华盛顿大学计算机科学与工程实验室发布并维护。该测试资料集中包含69万人的100万张图片,以海量人脸注册情况下的辨识率为主要指标,难度较大,其中还包含同一个名人不同年龄跨度的照片,其中不乏让人难以分辨的例子,例如下图:

  

\

 

  在MegaFace竞赛中,为了获得较高的排名,各大公司普遍会使用多模型和较高的算法层数,这样虽然可以使准确率大幅提高,但是相比单模型的“一人投票决定制”,多模型的“少数服从多数”显然要占用更大的计算资源,更别说动辄一两百层的深度计算神经网络。

  注重实战应用,一直是悠络客的一大优点,拥有30万+签约门店,覆盖各行各业,海量的到店人脸识别数据也帮助训练出了悠络客精准的实战化算法。采用单模型,52层深度计算神经网络,整套算法更小巧,可以嵌入在摄像监控等终端内,帮助门店监控抓取到店客户的人脸数据,形成更精准的顾客分析数据。

  

\

 

  目前,已有多家知名企业,在自己的门店内使用基于悠络客的人脸识别技术的顾客分析,VIP导购,精准客流等功能帮助提高门店管理运营效率,随着悠络客PaaS平台业务的展开,相信在未来,可以有更多的企业用低成本享受到这一精准的人脸识别技术。


第四十一届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:chenjian

免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。