2011-01-11 21:14:23 来源:csdn
百度的高性能计算系统(主要是后端数据训练和计算)目前有4000节点,超过10个的集群,最大的集群规模在1000个节点以上。每个节点由8核 CPU以及16G内存以及12TB硬盘组成,每天的数据生成量在3PB以上。规划当中的架构将有超过1万个节点,每天的数据生成量在10PB以上。

底层的计算资源管理层采用了Agent调度不同类型的计算分别给MPI结构的算法和Map-Reduce和DAG算法应用等。而通过调度的分配,可以让HPC高性能计算集群和大规模分布式集群各得其所的计算相应数据。

百度通过HCE对streaming作业的排序,压缩,解压缩,内存控制进行了优化并提供了C++版的MapReduce接口。




百度HCE语言的有关内容,HCE是基于C++的Hadoop环境,是一个全功能C++环境,可以避开Java语言对于释放内存和资源申请的弊端,并在调用数据时绕开Java语言的所有关节,极大的提升算法效率。

百度的调度器是在capacity-scheduler的基础上根据自身业务改进的。
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。
