DeepTraffic:MIT模拟游戏利用深度学习来缓解交通拥堵
DeepTraffic:MIT模拟游戏利用深度学习来缓解交通拥堵
2017-07-13 14:43:14 来源:36大数据
抢沙发
2017-07-13 14:43:14 来源:36大数据
摘要:Deep Traffic模拟典型的高速公路环境,其玩家使用深度学习来控制自己的汽车。该模拟使初学者对复杂的技术概念易于上手,而游戏化推动了专家开发全新的技术。
关键词:
DeepTraffic
深度学习

被堵在路上是个又丧又费钱的事儿,除了让人头疼还可能导致错过约炮,交通堵塞使美国司机每年多花3000亿。
研究人员认为即使是少数的自动驾驶车也将会大大改善交通流。 Lex Fridman和他在MIT的团队创造了一个游戏,来加速实现这个设想。
Deep Traffic模拟典型的高速公路环境,其玩家使用深度学习来控制自己的汽车。该模拟使初学者对复杂的技术概念易于上手,而游戏化推动了专家开发全新的技术。
使用神经网络的交通模拟游戏
想象你在洛杉矶一个繁忙的高速公路上开车。您必须决定跟车距离,何时更换车道,以及如何在导航时避免撞到其他车辆。这就是所谓的路径规划。 有了Deep Traffic,任何人都可以设计和训练一个深度神经网络。
在上月于硅谷举行的GPU技术大会上,Fridman谈到了游戏如何依赖强化学习。在强化学习这种方法里,当神经网络采取所需动作就会得到奖励,由此方法实现人工智能。通过反复重复这些奖励,网络学会了该如何做。
在这个游戏中,神经网络控制着一条沿着繁忙的高速公路行驶的红色汽车,目标是尽可能快地航行。初学者在浏览器中使用JavaScript来操纵参数并改变他们的驾驶行为。高玩通过OpenAI Gym进入DeepTraffic,并使用Python来训练网络。
竞速:DeepTraffic玩家使用深度学习技术,在路上快速行进
DeepTraffic最初是为Fridman在MIT教授的课程而设计。当课程内容和游戏甫一向公众开放,便受到广泛欢迎。凭借迄今已有的超过12,000份数据,DeepTraffic极具竞争力。用户以他们自己的网络所能达到的最快速度,在排行榜上交锋。
游戏因竞争而有趣,但真实世界的风险要高得多。自动驾驶车辆必须规划出从一个点到另一个点的安全路径。AI要求被给与一个艰难的驾驶任务。诸如DeepTraffic之类的教育工具有助于培养下一代AI开发人员以及改变汽车生态系统的平面解决方案。
DeepTraffic在线调试地址
第四十一届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:yulina
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。