做好数据挖掘模型的9条经验总结
做好数据挖掘模型的9条经验总结
2016-03-15 11:45:05 来源:数据海洋
抢沙发
2016-03-15 11:45:05 来源:数据海洋
摘要:数据挖掘是利用业务知识从数据中发现和解释知识(或称为模式)的过程,这种知识是以自然或者人工形式创造的新知识。
关键词:
大数据
第四,试验律(NFL律:No Free Lunch):对于数据挖掘者来说,天下没有免费的午餐,一个正确的模型只有通过试验(experiment)才能被发现
机器学习有一个原则:如果我们充分了解一个问题空间(problem space),我们可以选择或设计一个找到最优方案的最有效的算法。一个卓越算法的参数依赖于数据挖掘问题空间一组特定的属性集,这些属性可以通过分析发 现或者算法创建。但是,这种观点来自于一个错误的思想,在数据挖掘过程中数据挖掘者将问题公式化,然后利用算法找到解决方法。事实上,数据挖掘者将问题公 式化和寻找解决方法是同时进行的—–算法仅仅是帮助数据挖掘者的一个工具。
有五种因素说明试验对于寻找数据挖掘解决方案是必要的:
数据挖掘项目的业务目标定义了兴趣范围(定义域),数据挖掘目标反映了这一点;
与业务目标相关的数据及其相应的数据挖掘目标是在这个定义域上的数据挖掘过程产生的;
这些过程受规则限制,而这些过程产生的数据反映了这些规则;
在这些过程中,数据挖掘的目的是通过模式发现技术(数据挖掘算法)和可以解释这个算法结果的业务知识相结合的方法来揭示这个定义域上的规则;
数据挖掘需要在这个域上生成相关数据,这些数据含有的模式不可避免地受到这些规则的限制
在这里强调一下最后一点,在数据挖掘中改变业务目标,CRISP-DM有所暗示,但经常不易被觉察到。广为所知的CRISP-DM过程不是下一个步骤仅接着上一个步骤的“瀑布”式的过程。事实上,在项目中的任何地方都可以进行任何CRISP-DM步骤,同样商业理解也可以存在于任何一个步骤。业务目标不是简 单地在开始就给定,它贯穿于整个过程。这也许可以解释一些数据挖掘者在没有清晰的业务目标的情况下开始项目,他们知道业务目标也是数据挖掘的一个结果,不是静态地给定。
Wolpert的“没有免费的午餐”理论已经应用于机器学习领域,无偏的状态好于(如一个具体的算法)任何其他可能的问题(数据集)出现的平均状态。这是因为,如果我们考虑所有可能的问题,他们的解决方法是均匀分布的,以至于一个算法(或偏倚)对一个子集是有利的,而对另一个子集是不利的。这与数据挖掘者所知的具有惊人的相似性,没有一个算法适合每一个问题。但是经 过数据挖掘处理的问题或数据集绝不是随机的,也不是所有可能问题的均匀分布,他们代表的是一个有偏差的样本,那么为什么要应用NFL的结论?答案涉及到上 面提到的因素:问题空间初始是未知的,多重问题空间可能和每一个数据挖掘目标相关,问题空间可能被数据预处理所操纵,模型不能通过技术手段评估,业务问题本身可能会变化。由于这些原因,数据挖掘问题空间在数据挖掘过程中展开,并且在这个过程中是不断变化的,以至于在有条件的约束下,用算法模拟一个随机选择的数据集是有效的。对于数据挖掘者来说:没有免费的午餐。
这大体上描述了数据 挖掘过程。但是,在有条件限制某些情况下,比如业务目标是稳定的,数据和其预处理是稳定的,一个可接受的算法或算法组合可以解决这个问题。在这些情况下, 一般的数据挖掘过程中的步骤将会减少。 但是,如果这种情况稳定是持续的,数据挖掘者的午餐是免费的,或者至少相对便宜的。像这样的稳定性是临时的,因为 对数据的业务理解(第二律)和对问题的理解(第九律)都会变化的。
第五,模式律(大卫律):数据中总含有模式
这条规律最早由David Watkins提出。 我们可能预料到一些数据挖掘项目会失败,因为解决业务问题的模式并不存在于数据中,但是这与数据挖掘者的实践经验并不相关。
前文的阐述已经提到,这是因为:在一个与业务相关的数据集中总会发现一些有趣的东西,以至于即使一些期望的模式不能被发现,但其他的一些有用的东西可能会被 发现(这与数据挖掘者的实践经验是相关的);除非业务专家期望的模式存在,否则数据挖掘项目不会进行,这不应感到奇怪,因为业务专家通常是对的。
然而,Watkins提出一个更简单更直接的观点:“数据中总含有模式。”这与数据挖掘者的经验比前面的阐述更一致。这个观点后来经过Watkins修正,基于客户关系的数据挖掘项目,总是存在着这样的模式即客户未来的行为总是和先前的行为相关,显然这些模式是有利可图的(Watkins的客户关系管理定律)。但是,数据挖掘者的经验不仅仅局限于客户关系管理问题,任何数据挖掘问题都会存在模式(Watkins的通用律)。
Watkins的通用律解释如下:
数据挖掘项目的业务目标定义了兴趣范围(定义域),数据挖掘目标反映了这一点;
与业务目标相关的数据及其相应的数据挖掘目标是在这个定义域上的数据挖掘过程产生的;
这些过程受规则限制,而这些过程产生的数据反映了这些规则;
在这些过程中,数据挖掘的目的是通过模式发现技术(数据挖掘算法)和可以解释这个算法结果的业务知识相结合的方法来揭示这个定义域上的规则;
数据挖掘需要在这个域上生成相关数据,这些数据含有的模式不可避免地受到这些规则的限制
总结这一观点:数据中总存在模式,因为在这过程中不可避免产生数据这样的副产品。为了发掘模式,过程从(你已经知道它)—–业务知识开始。
利用业务知识发现模式也是一个反复的过程;这些模式也对业务知识有贡献,同时业务知识是解释模式的主要因素。在这种反复的过程中,数据挖掘算法简单地连接了业务知识和隐藏的模式。
如果这个解释是正确的,那么大卫律是完全通用的。除非没有相关的数据的保证,否则在每个定义域的每一个数据挖掘问题总是存在模式的。
第四十一届CIO班招生
国际CIO认证培训
首席数据官(CDO)认证培训
责编:pingxiaoli
免责声明:本网站(http://www.ciotimes.com/)内容主要来自原创、合作媒体供稿和第三方投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。
本网站刊载的所有内容(包括但不仅限文字、图片、LOGO、音频、视频、软件、程序等)版权归原作者所有。任何单位或个人认为本网站中的内容可能涉嫌侵犯其知识产权或存在不实内容时,请及时通知本站,予以删除。